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Universality of surface exponents of self-avoiding walks on a 
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Received 1 February 1991 

Abstract.  We use pheriomenological renomahation group technique to study 
the bulk and surface properlies of self-avoiding walks on a Manhatlan lattice. We 
find that, ag i s  the case for the bulk exponents. the undalying bond directionality 
does not change the universality class of the surface exponents relative to undirected 
iattices. We aim obtain an estimate ior h e  position of the binding transition. 

We present a transfer matrixstudy of a self-avoiding walk on a Manhattan lattice. The  
Manhattan lattice is a two-dimensional square lattice on which bonds are directed, as 
shown in figure I(a), so there is no overall directional bias [1,2]. Recent work [3,4] 
has suggested tha t  the collapse transition (tricritical point) of a self-avoiding walk 
on Manhattan lattices lies in a different universality class from tha t  on non-directed, 
two-dimensional lattices. Our aim i n  this paper is to discuss whether a similar division 
occurs for the  surface critical exponents. This seems a possibility given that surface 
phenomena along, for example, the (1,O) direction would take place in a locally directed 
environment. To this end we study the adsorption transition: in addition to exponents, 
we also obtain eslimates for the critical fugacity and the value of the surface interaction 
a t  which the walk becomes bound. 

We consider a self-avoiding walk on a strip of width L.  To implement the phe- 
nomenological renormalization group [ 5 ] ,  a transfer matrix is constructed for the strip. 
The  critical fugacities and exponents can be calculated from the largest eigenvalue. 
Extrapolation to L - M then gives estimates for the behaviour of the two-dimensional 
system [6].  

Both free and periodic boundary conditions will be used, the latter in order to 
provide estimates of bulk quantities Cor comparison. In the case of free boundary 
conditions an  energy -es is assigned to each bond tha t  lies along either side of the 
strip. I fw is the  monomer fugacity the generating function of the model can be written 

t On sabbalical leave from Departamento de Fisicn, PUCJRJ, CxP 36071, 22453 Rio de Janeiro RJ, 
Brazil. 
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I f J i f t t  

Figure 1.  (a) A self-avoiding walk on a strip of the Manhattan lattice, of width 
L = 5 .  Note the underlying bond directionality of the lattice itself. ( b )  The self- 
avoiding walk decomposed into a sequence of column state.  

where K = exp PJkT and N and N s  count the total number of steps in the walk and 
at the surface respectively. 

The generating function can be written in terms of transfer matrices, Tt , TI. The 
first step is to divide all the self-avoiding walk configurations on a strip into a sequence 
of columns. Figure l ( b )  shows the decomposition of the walk in figure l(a).  The set 
of allowed column states forms the basis for the transfer matrices. Transfer matrix 
elements, T j t ,  are labelled by the states of consecutive columns, j and k ,  and are 
defined as 

if the states can be connected to form a self-avoiding walk and zero otherwise. Different 
transfer matrices (which we label T and 1) are needed to add states preceded by 
columns of bonds pointing upwards and downwards, as the connectivity is different in 
the two cases. N , ,  and N;, are respectively the total number of steps and of surface 
steps between the centres of the columns j and k .  
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For free boundary conditions, in contrast to the case for self-avoiding walks on 
non-directed lattices, only strips of odd widths can be used. This is because a final 
row of bonds directed to the left, say, forms a t rap  for a walk progressing from the left. 
As a result the transfer matrices for strips of width L and L + 1 are identical for odd 
L. For periodic boundary conditions only even L must be used, t o  avoid two adjacent 
rows of bonds pointing in the same direction. I t  is possible to reach a maximum strip 
width L = 12 for the Manhattan lattice with periodic boundary conditions and L = 13 
with free boundary conditions. In table 1 we compare the sizes of the transfer matrices 
for self-avoiding walks on the Manhattan and the non-directed square lattice [7], both 
with free boundary conditions. 

Table 1. A comparison of the sizes of the transfa matrices for self-avoiding walks 
on the nondirected square and Manhattan lattices, for free boundary conditions. 

No of basis states No of non-zero matrix elements 

L Square Manhattan Square Manhattan 

3 5 
4 I2 
5 30 
6 76 
7 196 
8 512 
9 1353 

10 3610 
12 
13 

4 15 7 

16 247 48 

68 4453 353 

304 84848 2745 

60 

1040 

19328 

376064 

6752 185534 

The  partition function for a walk with ends respectively in the 0th and  R th  columns 
can be written in terms of the transfer matrix 

where U and v are vectors which depend on the initial and final positions of the walk 
and R is the end-to-end distance measured along the strip. Summing over all R gives 
the generating function. 

As R -t M the expression for Z L , R  is dominated by the largest eigenvalue of the 
transfer matrix, A,, and the partition function is given by 

2 - R - M .  (4) 

Hence the generating function diverges as A, - 1 .  The  singularity in 2, is due to 
the divergence of the average length of the  self-avoiding walk and defines the critical 
fugacity wf. for a strip of width L 

The  correlation length on a strip of width L is related to the largest eigenvalue 
through 
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We shall he concerned with the  critical behaviour a t  two fixed points. 

unbound phase. Here the surface interactions are irrelevant, 
1. The  ordinary fixed point, ( W * , K * ) ~ ~ ~ ,  which governs the critical behaviour of the 

2. The  special fixed point, ( w * , K * ) ~ ~ ,  which describes the binding transition. 

For large enough L the correlation length on a strip of width L is expected to scale 
as 

L-’F = F(LY(w -u*);Ly’(K - K * ) )  

F - (w -U’)-” (8) 

(7) 

where U = l/y is the usual bulk correlation length exponent 

and the  crossover exponent 

4 = Y”Y. (9) 

The leading relevant exponent y is expected to be the same a t  the ordinary and 
special fixed points. y6 describes an irrelevant variable at the ordinary fixed point 
and a relevant variable at the special fixed point; hence i t  is negative at the  former 
and positive at the latter. We shall use the notation (Y’),,~,, and (y”),, to distinguish 
the two cases where necessary. A t  the binding transition us = l / y s  describes the 
divergence of the thickness of the adsorbed layer 

(1 (. - K * ) - ( ” ‘ ) w .  (10) 

r,(r) - l/rq (11) 

rs(r) - I/rv’ (1‘4 

We shall also calculate the  decay-of-correlation exponents q and vs given through: 

and 

where rb(r), rs(r) are correlation functions at criticality between points separated by 
r ,  in the bulk and along the surface respectively. 

We implement the phenomenological renormalization group in two ways. 

(i)  One-parameter renormalization group 

We first consider no surface binding (K = 1). A series of approximations to the  
critical fugacity, wi! are obtained by comparing the correlation lengths on strips of 
two successive widths 

By linearising about the (ordinary) fixed point a series of approximations to the  ex- 
ponent y, defined in equations (7) and (8), can be obtained 
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We assume that the system is conformally invariant, even though the bonds are di- 
rected. Directionality is expected to be irrelevant here, since it has only a local (as 
opposed to global) character for the Manhattan lattice. We may then calculate a 
series of finite-size estimates to  

for free boundary conditions and 

for periodic boundary conditions. Here, stands for the critical fugacity of the 
infinite lattice [8]. We have used the series estimate wf=0.5771 

Results for free and periodic boundary conditions are shown in tables 2 and 3 
respectively. The extrapolated values were obtained by fitting the results for the three 
largest L values to  the formula 

0.0002 [Q]. 

A 
L* w;. = w:, i - 

where A and d are constants, and similarly for the other quantities. 

(ii! Tluo-?n"e!er rPnorm.nlirnlion g m 3 p  

We next consider a strip with free boundary conditions and allow the surface interac- 
tion to vary [ lo ,  111. Fixed points ( W E ,  rE) are obtained by comparing the correlation 
length on three strips 

These equations give two fixed points: the ordinary fixed point, which describes the 
behaviour of the unbound walk and the special fixed point which describes the walk's 
behaviour a t  the binding transition. 

Table 2. Critical properties of the Manhattan lattice: results from one-parameta 
renormalization group with free boundary conditions. 

L w t  YL n., 
- - 3 

5 0.61246 1.4231 
7 u.59405 i.40i8 
9 0.58660 1.3856 

11 0.58296 1.3739 
13 0.58096 1.3654 
Extrapolated 0.5766 1.303 
Best estimates 0.5771 f 0.0002 413 

0.7070 f 0.0009 
0.8752 0.0018 
U.Y68 f 0.om 
1.026 f 0.004 
1.064 f 0.005 
1.090 0.006 
1.25 f 0.02 
514 
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Table 3. Critical properties of the Manhattan lattice: results from the one- 
parameter renormalization group with periodic boundary conditions. 

L 4 YL ')L 

0.3136 f O.OW7 4 
6 0.56590 1.5172 0.2801 f 0.0013 
8 0.57150 1.4524 0.2611 i 0.0020 

10 0.57429 1.4141 0.2507 5 0.0027 
12 0.57563 1.3892 0.2503 f 0.0035 
Extrapolated 0.5780 1.307 0.23 * 0.02 
Best estimates 0.5771 i 0.0002 413 5/24 

- - 

Linearizing around the fixed points the exponents y and yB are found to be solu- 
tions of an equation 

where all the derivatives are evaluated at the fixed point in question, and y'=y, y' [12]. 
(qL)ord and (q& are then calculated from (15) where EL is estimated at  the finite- 
size estimates to the critical point. This is because, in contrast to the one-parameter 
case, estimates of (U;, K: )  more accurate than our own are not available. Of course 
wL, as a bulk property, is independent of K for K 5 ( K * ) ~ ~ ;  however, i t  would be 
inconsistent to use, for example, the series estimate of (91 while the corresponding n; 
suffers from unknown finite-size inaccuracies. 

The results are shown in tables 4 and 5 for the ordinary and special fixed points 
respectively. Where possible, the data  were extrapolated using (17); where this did 
not give a sensible result because of non-monotonic convergence, data for the largest 
two strip widths were extrapolated against L-'. This was the case for all quantities 
evaluated at  the ordinary fixed point except y,. 

Table 4. Critical properties of the Manhattan lattice at the ordinary fixed point 
results of the tweparameter renormalization group. 

L U;. 6: YL (gL)ord (&)ord 

7 0.57981 0.7507 1.4956 -1.5598 1.2542 
9 0.57560 0.6863 1.4298 -0.9697 1.3662 

11 0.57576 0.6913 1.3987 -0.9420 1.3601 
13 0.57612 0.7101 1.3801 -0.9518 1.3412 
Extrapolated 0.5781 0.814 1.327 -1.006 1.238 
Best estimates 0.5771 f 0.0002 - 413 -1 514 

It is always difficult to assess the accuracy of a phenomenological renormalization 
group calculation, as corrections to scaling introduce unknown systematic errors for 
finite values of L.  One way is to compare results from several different implementations 
of the technique where such alternatives exist. Comparing the results for w; from 
tables 2-5 we would conclude w; = 0.577 zk 0,001. This agrees well with, but is less 
precise than, the best series estimate available, 0.5771 * 0.0002 [9]. 
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Table 5. Critical properties of the Manhattan lattice at the special fixed point: 
results of tw*parametu renormalization group. 

L W I  *I YL W').P ( t i t b p  

7 0.5787l 1.4448 1.3730 0.7844 4,0353 
9 0.57777 1.4556 1.3582 0.7437 -0.0478 

11 0.57738 1.4611 1.3518 0.7232 4.0555 
13 0.57719 1.4643 1.3482 0.7112 -0.0606 
Extrapolated 0.5769 1.472 1.339 0.679 -0.084 
Best estimates 0.5771 + 0.0002 - 413 213 -1112 

For the value of K at which the walk binds to the surface, we have only one estimate, 
namely ( K * ) * ~  = 1.472 (table 5). Using the extrapolation (17) on L = 7,9,  11 rather 
than L = 9,11,13 gives an identical result, suggesting tha t  corrections to scaling may 
be unimportant. Thus,  this may be a good estimate; however, it is not possible to 
give realistic error bars. 

Our results for critical exponents are less precise. Averaging over results from the 
different approaches gives y = 1.32 i 0.02, in good agreement with the exact value 
for isotropic two-dimensional lattices, 413 [13]. Our value for the exponent which 
describes the decay of correlations in the bulk is q = 0.23k0.02, where the error bars 
arise from the  uncertainty in the series estimate of w,. This value is very close to the 
exact one for non-directed lattices, 5/24 (see for example [14] and references therein). 
This corroborates series results [9, 15,161 which, taken together, indicate tha t  all bulk 
exponents are the same for the  Manhattan and non-directed lattices. 

is expected to take the 
value 514 [17]. Taking into account the extrapolated results from the one- and tww 
parameter renormalization groups (tables 2 and 4 respectively), one obtains q i  = 
1.25k 0.02. Furthermore, at the ordinary fixed point (table 4), the extrapolation for 
the irrelevant eigenvalue (Y')~~,, = -1.006 is in good agreement with the corresponding 
exact value of -1 for isotropic lattices [10,11,17]. A similar picture holds at the 
special fixed point (table 5); the extrapolated exponent estimates (y"),, = 0.679 and 
( v ~ ) ~ , ,  = -0.084 agree very well with the  exact values for undirected lattices, 213 
and -1112 respectively [lo, 11,171. Thus  there is no evidence tha t  the surface critical 
behaviour of self-avoiding walks on the Manhattan lattice lies in a new universality 
class. 

Our work is tantamount to a check of the universality of the high-temperature 
phase of self-attracting self-avoiding walks on the Manhattan lattice. It is interesting 
to note that the universality of all bulk and surface exponents with those for undirected 
lattices h a s  already been obtained for Hamiltonian walks (which correspond to the 
low-temperature phase) on the Manhattan lattice [18]. With all exponents equal to 
their undirected-lattice counterparts at both ends of the temperature range, the non- 
universality found at the collapse point [3,4] becomes an even more interesting effect. 
We hope to explore this in the future. 

If the same is true for surface critical exponents, 
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