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Abstract. We use phenomenclogical renomalization group techniques to study
the bulk and surface properties of self-avoiding walks on a Manhattan laitice. We
find that, as is the case for the bulk exponents, the underlying bond directionality
does not change the universality class of the surface exponents relative to undirected
lattices. We also obtain an estimate for the position of the binding transition.

We present a transfer matrix study of a self-avoiding walk on a Manhattan lattice. The
Manhattan lattice is a two-dimensional square lattice on which bonds are directed, as
shown in figure 1(a), so there is no overall directional bias [1,2]. Recent work {3,4]
has suggested that the collapse tramsition (tricritical point) of a self-avoiding walk
on Manhattan lattices lies in a different universality class from that on non-directed,
two-dimensional lattices, Our aim in this paper is to discuss whether a similar division
occurs for the surface critical exponents. This seems a possibility given that surface
phenomena along, for example, the (1,0) direetion would take place in alocally directed
environment. To this end we study the adsorption transition: in addition to exponents,
we also obtain estimates for the critical fugacity and the value of the surface interaction
at which the walk becomes bound.

We consider a self-avoiding walk on a strip of width L. To implement the phe-
nomenological renormalization group [5)], a transfer matrix is constructed for the strip.
The critical fugacities and exponents can be calculated from the largest eigenvalue.
Extrapolation to L — oo then gives estimates for the behaviour of the two-dimensional
system (6).

Both free and periodic boundary conditions will be used, the latter in order to
provide estimates of bulk quantities for comparison. In the case of free boundary
conditions an energy —¢® is assigned to each bond that lies along either side of the
strip. If w is the monomer fugacity the generating function of the model can be written

Z:ZwNmN’ (1)
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Figure 1. (a) A self-avoiding walk on a strip of the Manhattan lattice, of width
L = 5. Note the underlying bond directionality of the lattice itself. (b) The seli-
avoiding walk decomposed into a sequence of column states.

where £ = exp ¢*/kT and N and N°® count the total number of steps in the walk and
at the surface respectively.

The generating function can be written in terms of transfer matrices, TT, TL. The
first step is to divide all the self-avoiding walk configurations on a strip into a sequence
of columns. Figure 1(b) shows the decomposition of the walk in figure 1(a). The set
of allowed column states forms the basis for the transfer matrices. Transfer matrix

elements, T, are labelled by the states of consecutive columns, j and k, and are
defined as

T}}f = Nk i (2)
if the states can be connected to form a self-avoiding walk and zero otherwise. Different
transfer matrices (which we label 1 and |) are needed to add states preceded by
columns of bonds pointing upwards and downwards, as the connectivity is different in
the two cases. N;, and N7, are respectively the total number of steps and of surface
steps between the centres of the columns § and k.
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For free boundary conditions, in contrast to the case for self-avoiding walks on
non-directed lattices, only strips of odd widths can be used. This is because a final
row of bonds directed to the left, say, forms a trap for a walk progressing from the left.
As a result the transfer matrices for strips of width L and L 4 1 are identical for odd
L. For periodic boundary conditions only even L must be used, to avoid two adjacent
rows of bonds pointing in the same direction. It is possible to reach a maximum strip
width L = 12 for the Manhattan lattice with periodic boundary conditions and L = 13
with free boundary conditions. In table 1 we compare the sizes of the transfer matrices
for self-avoiding walks on the Manhattan and the non-directed square lattice [7], both
with free boundary conditions.

Table 1. A comparison of the sizes of the transfer matrices for self-avoiding walks
on the non-directed square and Manhattan lattices, for free boundary conditions.

No of basis states No of non-zero matrix elements
L Square Manhattan Square Manhattan
3 5 4 15 7
4 12 60
5 30 16 247 48
6 76 1040
7 196 68 4453 353
8 512 19328
9 1353 304 84848 2745
10 3610 376064
12
13 6752 185534

The partition function for a walk with ends respectively in the Oth and Rth columns
can be written in terms of the transfer matrix

Zir= v‘(T“T’B)R”u (R even)

Z; g =0 (TOTA)R-DIAT 2y, (R odd) (3)
where # and v are vectors which depend on the initial and final positions of the walk
and R is the end-to-end distance measured along the strip. Summing over all R gives
the generating function.

As R — oo the expression for Z; g is dominated by the largest eigenvalue of the
transfer matrix, Ay, and the partition function is given by

Z~ (AR R — . (4)

Hence the generating function diverges as Ay — 1. The singularity in Z; is due to
the divergence of the average length of the self-avoiding walk and defines the critical
fugacity w} for a strip of width L

Ap(wi(x)) = 1. (3)

The correlation length on a strip of width L is related to the largest eigenvalue
through

§,=—(In AL)—I‘ (6)
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We shall be concerned with the critical behaviour at two fixed points.

1. The ordinary fixed point, {&*, &™), 4, Which governs the critical bekaviour of the
unbound phase. Here the surface interactions are irrelevant.

2. The special fixed point, (w”,&"),,, which describes the binding transition.

For large enough L the correlation length on a strip of width L is expected to scale

L7 = F(L¥(w ~w"); LY (k — 7)) (7)
where v = 1/y is the usual bulk correlation length exponent

v (w—wh)™ (8)
and the crossover exponent

o =1v"/y. (9)

The leading relevant exponent y is expected to be the same at the ordinary and
special fixed points. y® describes an irrelevant variable at the ordinary fixed point
and a relevant variable at the special fixed point; hence it is negative at the former
and positive at the latter. We shall use the notation (y*),4 and (3°),, to distinguish
the two cases where necessary. At the binding transition +®* = 1/y® describes the
divergence of the thickness of the adsorbed layer

£t~ (k= x')_(”’)”’. (10)
We shall also calculate the decay-of-correlation exponents i and r* given through:
Ly(r) ~ 1/r7 (11)

and
F(r) ~1/r" (12)

where T'y(r), T,(r) are correlation functions at criticality between points separated by
r, in the bulk and along the surface respectively.
We implement the phenomenological renormalization group in two ways.

(i) One-parameter renormalization group

We first consider no surface binding (x« = 1). A series of approximations to the
critical fugacity, w}, are obtained by comparing the correlation lengths on strips of
two successive widths

§r(wr) - fL—z(W}.) (13)
L L-2

By linearising about the (ordinary) fixed point a series of approximations to the ex-
ponent y, defined in equations (7) and (8), can be obtained

ln{(dEL/dW)wi / (d£L-2/dw)w1}
Yo = In(L/L - 2)

-1 (14)
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We assume that the system is conformally invariant, even though the bonds are di-
rected. Directionality is expected to be irrelevant here, since it has only a local (as
opposed to global) character for the Manhattan lattice. We may then calculate a
series of finite-size estimates to n

2L
=D )

for free boundaty conditions and

L
" ) 1o

for periodic boundary conditions. Here, w}, stands for the <ritical fugacity of the
infinite lattice {8). We have used the series estimate w}, =0.5771 + 0.0002 [9].

Results for free and periodic boundary conditions are shown in tables 2 and 3
respectively. The extrapolated values were obtained by fitting the results for the three
largest L values to the formula

s_ow A
wr = Wy + H (17)

where A and v are constants, and similarly for the other quantities.

(ii} Two-parameter renormalization group

""""" et o

We next consider a strip with free boundary conditions and allow the surface interac-
tion to vary [10, 11]. Fixed points (w}, x1) are obtained by comparing the correlation
length on three strips

£L—2(“’El "2) _ ‘EL(wEs":E) _ £L+2(w‘L! KE)
L-2 - L . L+2

{10}
(L))

These equations give two fixed points: the ordinary fixed point, which describes the
behaviour of the unbound walk and the special fixed point which describes the walk’s
behaviour at the binding transition.

Table 2. Critical properties of the Manhattan lattice: results from one-parameter
renormalization group with free boundary conditions.

L wy VL n
3 — —_— 0.7070 £ 0.0009
5 0.61248 1.4231 08752 @ 0.0018
7 0.59405 i.40i8 0968 & 0.003
9 0.58660 1.3856  1.026 & 0.004
11 0.58296 1.3739  1.064 + 0.005
13 0.58096 1.3654 1.090 @ 0.006
Extrapolated 0.5766 1.303 1.25 + 0.02

Best estimates  0.5771 £ 0.0002  4/3 5/4
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Table 3. Critical properties of the Manhattan lattice: results from the one
parameter renormalization group with periodic boundary conditions.

L w] vL nr
4 —— — 0.3136 £ 0.0007
[} 0.56590 1.5172 0.2801 + 0.0013
8 0.57150 1.4524 0.2611 + 0.0020
10 0.57429 1.4141 0.2507 £ 0.0027
12 0.57568 1.3892 0.2503 £ 0.0035
Extrapolated 0.5780 1.307 0.23 £ 0.02
Best estimates  0.5771 £ 0.0002  4/3 5/24

Linearizing around the fixed points the exponents y and y* are found to be solu-
tions of an equation

r-a2 _ (L-?)H'!'" 039 Br—2 _ (L—Z)H'y‘ %y
B L 8w an L X (19)
-2 _ (L-2 T o, 1_2 (L=2 Y ot
Bw L+2 dw D +2 8k

where all the derivatives are evaluated at the fixed point in question, and y'=y, y* [12].
(% )ora and (7)s, are then calculated from (15) where £ is estimated at the finite-
size estimates to the critical point. This 1s because, in contrast to the one-parameter
case, estimates of (w},, K7,) more accurate than our own are not available. Of course
W5, as a bulk property, is independent of & for £ < (k*),,; however, it would be
inconsistent to use, for example, the series estimate of [9] while the corresponding x7}
suffers from unknown finite-size inaccuracies.

The results are shown in tables 4 and 5 for the ordinary and special fixed points
respectively. Where possible, the data were extrapolated using (17); where this did
not give a sensible result because of non-monotonic convergence, data for the largest
two strip widths were extrapolated against L~=!. This was the case for all quantities
evaluated at the ordinary fixed point except y, .

Table 4. Critical properties of the Manhattan lattice at the ordinary fixed point
results of the two-parameter renormalization group.

L ""'I, "1 yL (yf[,)ord (nl)ord
7 0.57981 0.7507  1.4956  -1.5598  1,2542
9 0.57560 0.6863  1.4298 -0.9697  1.3662

11 0.57576 0.6913  1.3987 -0.9420 1.3601

13 0.57612 0.7101  1.3801 -0.9518  1.3412

Extrapolated 0.5781 0.814 1.327 -1.006 1.238

Best estimates  0.5771 £ 0.0002 — 4/3 -1 5/4

It is always difficult to assess the accuracy of a phenomenological renormalization
group calculation, as corrections to scaling introduce unknown systematic errors for
finite values of L. One way is to compare results from several different implementations
of the technique where such alternatives exist. Comparing the results for w}, from
tables 2-5 we would conclude w}, = 0.577 £ 0.001. This agrees well with, but is less
precise than, the best series estimate available, 0.5771 =+ 0.0002 {9].
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Table 5. Critical properties of the Manhattan latiice at the special fixed point:
results of two-parameter renormalization group.

L “L "y vL (ide  (nL)ep
7 0.57871 1.4448 1.3730 0.7844 —0.0353
9 0.57777 1.4556 1.3582 0.7437 -0.0478

11 0,57738 1.4611 1.3518 0.7232 -0.0555

13 0.57719 1.4643 1.3482 0.7112 -0.0606

Extrapolated 0.5769 1.472 1.339 0.679 —0.084

Best estimates  0.5771 % 0.0002 — 4/3 2/3 -1/12

For the value of & at which the walk binds to the surface, we have only one estimate,
namely (k7),, = 1.472 (table 5). Using the extrapolation (17) on L = 7,9, 11 rather
than L = 9,11,13 gives an identical result, suggesting that corrections to scaling may
be unimportant. Thus, this may be a good estimate; however, it is not possible to
give realistic error bars.

Our results for critical exponents are less precise. Averaging over results from the
different approaches gives y = 1.32 £ 0.02, in good agreement with the exact value
for isotropic two-dimensional lattices, 4/3 [13]. Our value for the exponent which
describes the decay of correlations in the bulk is n = 0.23 £0.02, where the error bars
arise from the uncertainty in the series estimate of w},. This value is very close to the
exact one for non-directed lattices, 5/24 (see for example [14] and references therein).
This corroborates series results [9, 13, 16] which, taken together, indicate that all buik
exponents are the same for the Manhattan and non-directed lattices.

If the same is true for surface critical exponents, (7°)_.4 is expected to take the
value 5/4 [17]. Taking into account the extrapolated results from the one- and two-
parameter renormalization groups (tables 2 and 4 respectively), one obtains j =
1.254 0.02. Furthermore, at the ordinary fixed point (table 4), the extrapolation for
the irrelevant eigenvalue (y°),.4 = —1.006 is in good agreement with the corresponding
exact value of —1 for isotropic lattices [10,11,17]. A similar picture holds at the
special fixed point (table 5); the extrapolated exponent estimates (¥°),, = 0.679 and
(7)sp = —0.084 agree very well with the exact values for undirected lattices, 2/3
and —1/12 respectively [10,11,17]. Thus there is no evidence that the surface critical
behaviour of self-avoiding walks on the Manhattan lattice lies in a new universality
class.

Our work is tantamount to a check of the universality of the high-temperature
phase of self-attracting self-avoiding walks on the Manhattan lattice. It is interesting
to note that the universality of all bulk and surface exponents with those for undirected
lattices has already been obtained for Hamiltonian walks {which correspond to the
low-temperature phase) on the Manhattan lattice [18]. With all exponents equal to
their undirected-lattice counterparts at both ends of the temperature range, the non-
universality found at the collapse point [3,4] becomes an even more interesting effect.
We hope to explore this in the future.
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